# Psy 420 – Midterm 1 Part 2 – In lab (50 points total)

Your 420 professor decides that he wants to find out how much impact amount of study time has on the first midterm. He randomly assigns students to study for 10 hours, 8 hours, 6 hours, 4 hours and 2 hours; recording each student's midterm grade. Results are shown below.

|      | 10 hours | 8 hours | 6 hours | 4 hours | 2 hours |
|------|----------|---------|---------|---------|---------|
|      | 83       | 57      | 24      | 20      | 21      |
|      | 67       | 67      | 43      | 37      | 17      |
|      | 88       | 69      | 30      | 36      | 31      |
|      | 97       | 68      | 55      | 47      | 2       |
|      | 74       | 73      | 32      | 36      | 25      |
|      | 89       | 67      | 46      | 24      | 29      |
|      | 93       | 72      | 43      | 34      | 28      |
|      | 65       | 48      | 31      | 20      | 26      |
|      | 66       | 60      | 19      | 30      | 21      |
|      | 86       | 59      | 40      | 30      | 27      |
| Mean | 80.80    | 64.00   | 36.30   | 31.40   | 22.70   |
| SD   | 11.87    | 7.82    | 10.98   | 8.45    | 8.42    |

# SPSS output for 420 midterm study

UNIANOVA score BY stdytime /CONTRAST (stdytime)=special (1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 (NTERCEPT = INCLUDE /PRINT = ETASQ HOMOGENEITY /CRITERIA = ALPHA(.05) /DESIGN = stdytime .

#### **Between-Subjects Factors**

|            |   | Value Label | N |
|------------|---|-------------|---|
| STDYTIME 1 |   | 10 hours    | 7 |
| 2          | 2 | 8 hours     | 7 |
| 3          | 3 | 6 hours     | 7 |
| 4          | ł | 4 hours     | 7 |
| 5          | 5 | 2 hours     | 7 |

#### Levene's Test of Equality of Error Variances <sup>a</sup>

Dependent Variable: SCORE

| F     | df1 | df2 | Sig. |
|-------|-----|-----|------|
| 1.202 | 4   | 30  | .331 |

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept+STDYTIME

#### Tests of Between-Subjects Effects

| Dependent Variable | : SCORE                    |    |             |         |      |                        |
|--------------------|----------------------------|----|-------------|---------|------|------------------------|
| Source             | Type III Sum<br>of Squares | df | Mean Square | F       | Sig. | Partial Eta<br>Squared |
| Corrected Model    | 18752.686 <sup>a</sup>     | 4  | 4688.171    | 53.763  | .000 | .878                   |
| Intercept          | 84919.314                  | 1  | 84919.314   | 973.845 | .000 | .970                   |
| STDYTIME           | 18752.686                  | 4  | 4688.171    | 53.763  | .000 | .878                   |
| Error              | 2616.000                   | 30 | 87.200      |         |      |                        |
| Total              | 106288.000                 | 35 |             |         |      |                        |
| Corrected Total    | 21368.686                  | 34 |             |         |      |                        |

a. R Squared = .878 (Adjusted R Squared = .861)

# **Custom Hypothesis Tests**

Contrast Results (K Matrix)

|                           |                             |             | Dependent<br>Variable |
|---------------------------|-----------------------------|-------------|-----------------------|
| STDYTIME Special Contrast |                             |             | SCORE                 |
| Comp 1                    | Contrast Estimate           |             | 16.857                |
|                           | Hypothesized Value          |             | 0                     |
|                           | Difference (Estimate - Hype | othesized)  | 16.857                |
|                           | Std. Error                  |             | 4.991                 |
|                           | Sig.                        |             | .002                  |
|                           | 95% Confidence Interval     | Lower Bound | 6.663                 |
|                           | for Difference              | Upper Bound | 27.051                |
| Comp 2                    | Contrast Estimate           |             | 28.571                |
|                           | Hypothesized Value          |             | 0                     |
|                           | Difference (Estimate - Hype | othesized)  | 28.571                |
|                           | Std. Error                  |             | 4.991                 |
|                           | Sig.                        |             | .000                  |
|                           | 95% Confidence Interval     | Lower Bound | 18.378                |
|                           | for Difference              | Upper Bound | 38.765                |
| Comp 3                    | Contrast Estimate           |             | 5.571                 |
|                           | Hypothesized Value          |             | 0                     |
|                           | Difference (Estimate - Hype | othesized)  | 5.571                 |
|                           | Std. Error                  |             | 4.991                 |
|                           | Sig.                        |             | .273                  |
|                           | 95% Confidence Interval     | Lower Bound | -4.622                |
|                           | for Difference              | Upper Bound | 15.765                |
| Comp 4                    | Contrast Estimate           |             | 11.571                |
|                           | Hypothesized Value          |             | 0                     |
|                           | Difference (Estimate - Hype | othesized)  | 11.571                |
|                           | Std. Error                  |             | 4.991                 |
|                           | Sig.                        |             | .027                  |
|                           | 95% Confidence Interval     | Lower Bound | 1.378                 |
|                           | for Difference              | Upper Bound | 21.765                |

Questions referring to the 420 Midterm Experiment

- Do the five groups meet the homogeneity of variance assumption? How do you know? (2 points)
  Yes, Levene's test
- 2. Does amount of study time affect midterm scores? How do you know? (2 points)

Yes, because of the overall ANOVA

3. Are the comparisons orthogonal? Show how you came to your conclusion. (2 points)

No, because when you cross multiply them the sums are not zero (they're -1)

4. As a planned comparison, does studying for 4 hours improve your score when compared to only 2 hours? Explain your answer. (1 point)

Yes, because Comp 4 is significant at .05.

5. Is 4 hours of study significantly different than 2 hours of study after a Tukey adjustment? Show your work. (3 points)

They have calculated Tukey as a mean difference (because that's all they have from the table above) and come to the conclusion that it is no longer significant.

 $\overline{d}_T = q_T \sqrt{\frac{MS_{S/A}}{n}} = 4.10 \sqrt{\frac{87.2}{10}} = 12.11$  I think that's right, I don't have the book and I looked up the value of q online. If they did it the other way and got the F-Tukey they should get most of the credit.

A researcher is interested in whether different stats courses offered at CSUN aversely affect quality of life for students enrolled. The researcher randomly selected 5 students from each of the following courses: Psy 420, Psy 524 and Psy 520. Results and layout for a regression analysis are listed below, scores are on a scale of 1 to 10 with 10 meaning better quality of life.

| _   |   |    |    |
|-----|---|----|----|
|     | у | x1 | x2 |
|     | 9 | -1 | -1 |
|     | 8 | -1 | -1 |
| 420 | 8 | -1 | -1 |
|     | 8 | -1 | -1 |
|     | 7 | -1 | -1 |
|     | 6 | -1 | 1  |
|     | 7 | -1 | 1  |
| 524 | 7 | -1 | 1  |
|     | 8 | -1 | 1  |
|     | 6 | -1 | 1  |
|     | 3 | 2  | 0  |
|     | S | 2  | 0  |
| 520 | 3 | 2  | 0  |
|     | 2 | 2  | 0  |
|     | 3 | 2  | 0  |

# **Output for Stat Class Study**

#### Variables Entered/Removed b

| Model | Variables Entered   | Variables<br>Removed | Method |
|-------|---------------------|----------------------|--------|
| Wouer | Valiables Littered  | Tienioveu            | Method |
| 1     | X2, X1 <sup>a</sup> |                      | Enter  |

a. All requested variables entered.

b. Dependent Variable: Y

#### Model Summary

| Model | R                 | R Square | Adjusted R Square | Std. Error of the Estimate |
|-------|-------------------|----------|-------------------|----------------------------|
| 1     | .964 <sup>a</sup> | .930     | .918              | .683                       |

a. Predictors: (Constant), X2, X1

#### ANOVAb

| Model |            | Sum of Squares | df | Mean Square | F      | Sig.              |
|-------|------------|----------------|----|-------------|--------|-------------------|
| 1     | Regression | 74.133         | 2  | 37.067      | 79.429 | .000 <sup>8</sup> |
|       | Residual   | 5.600          | 12 | .467        |        |                   |
|       | Total      | 79.733         | 14 |             |        |                   |

a. Predictors: (Constant), X2, X1

b. Dependent Variable: Y

### Coefficients<sup>a</sup>

|       |            | Unstandardized Coefficients |            | Standardized<br>Coefficients |         |      |
|-------|------------|-----------------------------|------------|------------------------------|---------|------|
| Model |            | В                           | Std. Error | Beta                         | t       | Sig. |
| 1     | (Constant) | 5.867                       | .176       |                              | 33.261  | .000 |
|       | X1         | -1.533                      | .125       | 941                          | -12.294 | .000 |
|       | X2         | 600                         | .216       | 212                          | -2.777  | .017 |

a. Dependent Variable: Y

# Questions related to the Stat Course Study

6. Does quality of life differ for the three statistics courses? Explain. (2 points)

Yes, regression above is significant.

7. What is the  $\eta^2$  value for the effect of statistics classes? (2 points)

$$\eta^2 = \frac{74.133}{79.733} = .93$$

8. What is the predicted score for the first subject in the 420 course? Show how you got the answer. (2 points)

The answer is 8. And they could have got that answer by either solving for Y' = -1\*(-1.533) - 1\*(-.60) + 5.867 or they could have said that it was 8 because that is the mean for group 1.

9. Is quality of life statistically worse for students in the 524 course when compared to the 420 course? How do you know? (2 points)

Yes because the second b is significant and in the right direction.

10. How do you interpret the B for  $X_1$  (-1.533)? The constant (5.867)? (2 points)

B is 1/3 the distance between the 2 groups (520 vs. 524 and 420) Or it's the distance between 524 and 420 and the grand mean Or it's half the distance between 520 and the grand mean. 11. You are an experimenter trying to test the effect of different disorders (Aspergers, Pervasive Developmental Disorder, Autism) and different types of behavioral therapy (Floor time, Discrete Trials, Pivotal Response Training) on length of eye contact of each child (measured in seconds). 9 children with each disorder were randomly assigned to one of the three treatments (27 subjects total). Set up the chart below to do an ANOVA through regression for this data; just set it up, <u>do not proceed</u> to the analysis (20 points)

| А            | В   | Y      |   |   |   |   |   |      |       |      |   |   |   |  |
|--------------|-----|--------|---|---|---|---|---|------|-------|------|---|---|---|--|
|              |     | 2      |   |   |   |   |   |      |       |      |   |   |   |  |
|              | FΤ  | 1      |   |   |   |   |   |      |       |      |   |   |   |  |
|              | I   | 2      | - |   |   |   |   | -    |       |      | - | - |   |  |
| ers          | _   | 3      |   |   |   |   |   | <br> |       | <br> |   |   |   |  |
| erg          | DTT | 4      |   |   |   |   |   | <br> |       | <br> |   |   |   |  |
| Aspergers    | D   |        |   |   |   |   |   |      |       |      |   |   |   |  |
| A            |     | 3<br>2 |   |   |   |   |   |      |       |      |   |   |   |  |
|              | PRT | 2      |   |   |   |   |   |      |       |      |   |   |   |  |
|              | Р   | 1      |   |   |   |   |   |      |       |      |   |   |   |  |
|              |     | 3      |   |   |   |   |   |      |       |      |   |   |   |  |
|              | FΤ  | 4      |   |   |   |   |   | <br> |       | <br> |   |   |   |  |
| D            |     | 4      |   |   |   |   |   |      |       |      |   |   |   |  |
| D            | _   |        |   |   |   |   |   |      |       |      |   |   |   |  |
| ive          | DTT | 2 4    |   |   |   |   |   |      |       |      |   |   |   |  |
| vas          | D   |        |   |   |   |   |   |      |       |      |   |   |   |  |
| Pervasive DD |     | 3      |   |   |   |   |   |      |       |      |   |   |   |  |
|              | PRT |        |   |   |   |   |   |      |       |      |   |   |   |  |
|              | Р   | 2<br>2 |   |   |   |   |   | <br> |       | <br> |   |   |   |  |
|              |     | 1      |   |   |   |   |   | <br> |       | <br> |   |   |   |  |
|              | FΤ  | 0      | - |   |   |   |   | -    |       |      | - | - |   |  |
|              | I   | 1      |   |   |   |   |   |      |       |      |   |   |   |  |
| В            | r   |        |   |   |   |   |   | <br> |       | <br> |   |   |   |  |
| Autism       | DTT | 3      |   |   |   |   |   | <br> |       | <br> |   |   |   |  |
| Au           | Д   | 3      |   |   |   |   |   | <br> |       | <br> |   |   |   |  |
|              | r   | 1      |   |   |   |   |   | <br> |       | <br> |   |   |   |  |
|              | PRT | 1      |   |   |   |   |   | <br> |       | <br> |   |   |   |  |
|              | Р   | 1      |   |   |   |   |   | <br> |       | <br> |   |   |   |  |
| Su           | ım  | 59     |   | 1 | 1 | 1 | 1 | <br> | <br>1 | <br> |   |   | 1 |  |
| 0            | 0   | 1.60   |   |   |   |   |   |      |       |      |   |   |   |  |

Sum Sq 163

# Output for the Disorders by Treatment study

|          |      | Value Label                             | Ν |
|----------|------|-----------------------------------------|---|
| DISORDER | 1.00 | Aspergers                               | 9 |
|          | 2.00 | Pervasive<br>Development<br>al Disorder | 9 |
|          | 3.00 | Autism                                  | 9 |
| TREATMNT | 1.00 | Floortime                               | 9 |
|          | 2.00 | Discrete Trial<br>Training              | 9 |
|          | 3.00 | Pivotal<br>Response<br>Training         | 9 |

### **Between-Subjects Factors**

#### **Descriptive Statistics**

#### Dependent Variable: Y

| DISORDER               | TREATMNT                  | Mean   | Std. Deviation | Ν  |
|------------------------|---------------------------|--------|----------------|----|
| Aspergers              | Floortime                 | 1.6667 | .57735         | 3  |
|                        | Discrete Trial Training   | 3.3333 | .57735         | 3  |
|                        | Pivotal Response Training | 1.6667 | .57735         | 3  |
|                        | Total                     | 2.2222 | .97183         | 9  |
| Pervasive              | Floortime                 | 3.6667 | .57735         | 3  |
| Developmental Disorder | Discrete Trial Training   | 3.0000 | 1.00000        | 3  |
|                        | Pivotal Response Training | 1.6667 | .57735         | 3  |
|                        | Total                     | 2.7778 | 1.09291        | 9  |
| Autism                 | Floortime                 | .6667  | .57735         | 3  |
|                        | Discrete Trial Training   | 3.0000 | .00000         | 3  |
|                        | Pivotal Response Training | 1.0000 | .00000         | 3  |
|                        | Total                     | 1.5556 | 1.13039        | 9  |
| Total                  | Floortime                 | 2.0000 | 1.41421        | 9  |
|                        | Discrete Trial Training   | 3.1111 | .60093         | 9  |
|                        | Pivotal Response Training | 1.4444 | .52705         | 9  |
|                        | Total                     | 2.1852 | 1.14479        | 27 |

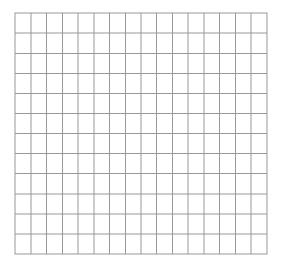
### Levene's Test of Equality of Error Variances <sup>a</sup>

Dependent Variable: Y

| F     | df1 | df2 | Sig. |
|-------|-----|-----|------|
| 2.400 | 8   | 18  | .059 |

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept+DISORDER+TREATMNT+DISORDER \* TREATMNT


### Tests of Between-Subjects Effects

| Dependent Variable: Y |                            |    |             |         |      |                        |  |
|-----------------------|----------------------------|----|-------------|---------|------|------------------------|--|
| Source                | Type III Sum<br>of Squares | df | Mean Square | F       | Sig. | Partial Eta<br>Squared |  |
| Corrected Model       | 28.074 <sup>a</sup>        | 8  | 3.509       | 10.528  | .000 | .824                   |  |
| Intercept             | 128.926                    | 1  | 128.926     | 386.778 | .000 | .956                   |  |
| DISORDER              | 6.741                      | 2  | 3.370       | 10.111  | .001 | .529                   |  |
| TREATMNT              | 12.963                     | 2  | 6.481       | 19.444  | .000 | .684                   |  |
| DISORDER * TREATMNT   | 8.370                      | 4  | 2.093       | 6.278   | .002 | .582                   |  |
| Error                 | 6.000                      | 18 | .333        |         |      |                        |  |
| Total                 | 163.000                    | 27 |             |         |      |                        |  |
| Corrected Total       | 34.074                     | 26 |             |         |      |                        |  |

a. R Squared = .824 (Adjusted R Squared = .746)

# Questions related to the Disorders by Treatment Study

12. There is a significant interaction, draw a graph (using the grid below) that illustrates the nature of the interaction above (5 points)



13. The effect size for treatment is .684, how did the computer calculate that number? (2 points)

12.963/12.963+6.00

14. Given the significant effects, what type of follow up comparisons should be performed (no computations, just tell me what it/they should be) (3 points)

Interaction contrasts